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Summary

� Plants control water-use efficiency (WUE) by regulating water loss and CO2 diffusion

through stomata. Variation in stomatal control has been reported among lineages of vascular

plants, thus giving rise to the possibility that different lineages may show distinct WUE

dynamics in response to water stress.
� Here, we compared the response of gas exchange to decreasing leaf water potential among

four ferns and nine seed plant species exposed to a gradually intensifying water deficit. The

data collected were combined with those from 339 phylogenetically diverse species obtained

from previous studies.
� In well-watered angiosperms, the maximum stomatal conductance was high and greater

than that required for maximumWUE, but drought stress caused a rapid reduction in stomatal

conductance and an increase in WUE in response to elevated concentrations of abscisic acid.

However, in ferns, stomata did not open beyond the optimum point corresponding to maxi-

mumWUE and actually exhibited a steady WUE in response to dehydration. Thus, seed plants

showed improved photosynthetic WUE under water stress.
� The ability of seed plants to increase WUE could provide them with an advantage over ferns

under drought conditions, thereby presumably increasing their fitness under selection pressure

by drought.

Introduction

From root absorption to circulation up the stem and transpira-
tion through the leaves, water transport and utilization are the
foundation of survival of land plants (McAdam & Brodribb,
2012; Buckley et al., 2017). Plants invest high amounts of
energy to build a safe and effective water transport system
(mainly comprised of the vascular bundles) (Brodribb et al.,
2017; Waseem et al., 2021). Furthermore, plants have evolved a
fully functional signalling network for the optimal adjustment
of stomatal aperture, aiming to regulate water-use efficiency
(WUE) (Xiao et al., 2018), such that it may be maximal under
a wide range of environmental conditions (Cowan & Farquhar,
1977; Brodribb et al., 2009; McAdam & Brodribb, 2012; Yao
et al., 2021b).

Selective pressures throughout the history of land plants have
been proposed as evolutionary drivers favouring a continuous
increase in WUE (Brodribb et al., 2009; McAdam & Brodribb,
2012; Gago et al., 2014; Negin & Moshelion, 2016). Thus, dif-
ferences in gas exchange efficiency are linked to systematic pat-
terns of stomatal behaviour. For example, the stomata of

angiosperms close rapidly in response to increasing ambient CO2

concentration, whereby instantaneous WUE (WUEins, defined as
the ratio of photosynthesis rate (A) to transpiration rate (E))
increases significantly, relative to the early diverging lineages of
ferns and lycophytes (Brodribb et al., 2009). Furthermore, in
seed plants, intrinsic WUE (WUEi, defined as the ratio of A to
stomatal conductance (gs)) remains high and constant under fluc-
tuating light intensities. However, the stomata of ferns and lyco-
phytes are reportedly incapable of sustaining homeostatic WUEi
at nonsaturating light intensities. WUEi decreases significantly in
ferns and lycophytes, especially those that display the greatest
changes in photosynthetic rates following the transition from
high to low light intensity (McAdam & Brodribb, 2012). Both
these studies indicated that more advantageous WUE control
capabilities may have conferred a competitive advantage that con-
tributed to the success of seed plants in modern ecosystems (Bro-
dribb et al., 2009; McAdam & Brodribb, 2012). Water deficit is
the most common environmental stress affecting plants around
the world, and is one of the primary selective forces in the plant
evolutionary process (Bohnert et al., 1995). However, whether
seed plants show a greater capacity to optimize WUE in response
to water deficit than ancient plant lineages, such as ferns, remains
unknown.*These authors contributed equally to this work.
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Angiosperms show greater stomatal conductance and transpi-
ration and photosynthesis rates under well-watered conditions
(Brodribb et al., 2005; Brodribb & Feild, 2010; Carriquı́ et al.,
2015); further, under such conditions their stomata open beyond
the optimum required for maximum A (Deans et al., 2019).
Conversely, when water supply is insufficient or when the tran-
spiration rate exceeds water supply, the first line of defence
against a decrease in internal water potential is to close ‘excessive’
stomatal opening, mainly by inducing an increase in foliar
abscisic acid (ABA), which in turn reduces transpiration (Davies
& Zhang, 1989; Dodd, 2013; Assmann & Jegla, 2016). Stomata
are more sensitive to a decrease in internal water potential than
photosynthetic biochemistry, and stomatal closure causes a drop
in mesophilic CO2, thereby increasing the concentration gradient
for CO2 diffusion and ultimately increasing WUE (Davies et al.,
2002; Álvarez et al., 2011; Medrano et al., 2015). The accumula-
tion of ABA, which reduces stomatal closure when plants are sub-
jected to a water deficit, is considered to be a key factor that can
optimize WUE and shape plant adaptation to dry environments
(Campitelli et al., 2016; Negin & Moshelion, 2016). However,
early-diverging vascular plant lineage ferns are characterized by
low stomatal conductance and photosynthesis rates (Brodribb
et al., 2005; Brodribb & Feild, 2010; Carriquı́ et al., 2015),
which are c. 30% of those measured in angiosperms under well-
watered conditions; furthermore, stomata do not open beyond
the optimum as observed in well-watered angiosperms (Deans
et al., 2019). Consequently, a drought-induced decline in gs
would constrain photosynthesis greatly, A and gs would decrease
synchronously, and the species would show no improvement in
WUE. Therefore, if seed plants are better equipped for signifi-
cantly improving WUE in order to adapt to disturbances caused
by water deficit and produce a more competitive outcome than
ferns, the mechanism at play might be associated with a rapid
reduction in ‘excessive’ stomatal conductance in response to ele-
vated concentrations of ABA.

In the present study, we hypothesized that ferns and seed
plants would show contrasting patterns of WUE during drought.
In order to test this hypothesis, leaf water potential (ψ leaf), A, gs,
E and ABA concentrations were examined in four ferns, five gym-
nosperms and four angiosperms subjected to drought stress con-
ditions. Data obtained from this experiment were compared with
data from previously published studies on WUE in phylogeneti-
cally diverse ferns, gymnosperms and angiosperms, and then
analysed. The results supported our hypothesis that seed plants
possess a higher stomatal capacity to upregulate WUE based on a
rapid decrease in ‘excessive’ stomatal opening in response to ele-
vated concentrations of ABA, compared with more ancient plant
lineages (e.g. ferns), which are not equipped with ‘excessive’
stomatal opening.

Materials and Methods

Target species and growing conditions

Functionally and phylogenetically diverse vascular plant species,
including four ferns (Coniogramme intermedia, Polystichum

neolobatum, Matteuccia struthiopteris and Athyrium sinense), five
gymnosperms (Pinus tabuliformis, Pinus bungeana, Taxus
chinensis, Metasequoia glyptostroboides and Ginkgo biloba), and
four angiosperms (Populus davidiana, Euonymus bungeanus,
Fraxinus chinensis and Sophora japonica) were selected according
to their habitats to test their WUE response to a water deficit. All
the species were collected from the same site in the Xiaolongshan
Natural Forest area in Tianshui City, Gansu Province, China
(34°000–34°400N, 105°300–106°300E). Matteuccia struthiopteris
and A. sinense are widely distributed in open and sunny habitats.
They are mainly found growing by the creek and forest edges.
Polystichum neolobatum and C. intermedia grow widely in shady
habitats, while seed plants are widely distributed in forests in
sunny, partially shaded or shaded habitats (Table S1), where the
average temperature is 23°C during the day and 18°C at night,
and the average relative humidity (RH) is 66% during the day
and 86% at night in June and July ranges. Maximum natural
photosynthetic photon flux density (PPFD) at midday during the
summer is c. 300–400 μmol quanta m−2 s−1 for P. neolobatum
and C. intermedia growing in shady habitats, and more than
1400 μmol quanta m−2 s−1 for the species growing in sunny
habitats (data from local weather station; Chen et al., 2019).

In April 2014, small uniform seedlings were transferred into
pots (diameter 15 cm, height 22 cm) containing a mixture of
humus soil, vermiculite, and perlite in a 9 : 2 : 1 ratio. These
plants were grown at a nearby tree nursery where they received an
unlimited water and nutrient supply, and similar light conditions
as those found in their natural habitats. In June 2016, after c. 2
yr, potted plants were transferred to a glasshouse in the experi-
mental station of the Yuzhong campus at Lanzhou University,
China (35°510N, 104°070E). All environmental factors, except
for irrigation water used in lieu of rainfall, were kept the same in
an attempt to mimic natural conditions. The experimental setup
was maintained at 23°C : 18°C, day : night with a RH of 66% :
86%, day : night. Polystichum neolobatum and C. intermedia
received c. 0.25–0.33 of the natural light intensity under a shade
net, while plants of the other species (two ferns and nine seed
plants) received plenty of natural light. All plants were irrigated
daily until the beginning of the experiment.

Exposure to drought stress

Towards the end of June, when the average height of the experi-
mental seed plants ranged from 100 to 150 cm, and that of ferns
ranged from 30 to 50 cm, drought stress was imposed on more
than 10 individuals per species by withholding water supply for c.
3 wk for ferns and 3–5 wk for seed plants. During the dry
period, ψ leaf, A, gs, E and leaf ABA concentrations were measured
at 1–2 d intervals.

ψ leaf and gas exchange measurements

The ψ leaf values of four fully expanded upper leaves from differ-
ent individuals of each species were measured between 07:30 h
and 09:00 h Beijing Standard Time (BST) every 1–2 d, using a
pressure chamber (Model 1000; PMS Instrument Co., Albany,
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OR, USA), and following the precautions recommended by Fang
et al. (2010). Briefly, leaves were collected and immediately
placed in a sealable Whirl-Pak bag (Nasco, GA, USA), which had
previously been exhaled to ensure 100% humidity. Following 20
min equilibration, ψ leaf was measured.

After measurement of ψ leaf, the leaves in close proximity to the
leaves used for measuring ψ leaf were used to measure A, gs and E
with a portable gas exchange instrument (LI-6400; Li-Cor, Lin-
coln, NE, USA) configured as an open system and equipped with
a LED for a light source. These parameters were measured early
in the morning, as preliminary data showed that the values for
gas exchange parameters measured in the species under study
were highest in those early hours. The measuring system was
maintained at a temperature of 22°C in the leaf chamber, an
ambient CO2 concentration of 400 ppm, a vapour pressure
difference between 1.1 and 1.4 kPa, and an air flow rate
of 400 ml min–1. Gas exchange was measured at 1200 μmol
m−2 s−1 PPFD in all the species tested in this study, except for
two shade ferns (P. neolobatum and C. intermedia), which were
measured at a photosynthetic flux density of 400 μmol m−2 s−1.
The rates of A, E, and gs for water vapour allowed the determina-
tion of WUEins (A/E) and WUEi (A/gs) as described by Fischer
& Turner (1978) and Gago et al. (2014).

ABA measurement

Leaves in close proximity to the leaf used for measuring gas
exchange were removed from each plant every 2–4 d after mea-
surements of gas exchange. If, between two adjacent sampling
points, ψ leaf fell by < 0.3 MPa, the leaves were not sampled.
The removed leaves were divided into two groups. Approxi-
mately half of these leaves were immediately weighed and dried
to constant mass to determine the dry mass : fresh mass ratio.
The remaining leaves were weighed immediately before freezing
in liquid nitrogen and storing at −80°C to measure ABA con-
centrations.

Abscisic acid concentrations were determined following the
methods described by McAdam & Brodribb (2015). Briefly, leaf
samples were ground to a powder under liquid nitrogen and
mixed with 5 ml of an 80% methanol solution (containing 0.02
M 2,6-di-tert-butyl-4-methyphenol). Labelled ABA (D6-ABA)
was added to this mixture, and the resulting solution was main-
tained at 4°C for 12 h. Following centrifugation at 4°C and
10 000 g for 10 min, the supernatant was removed and the pellet
was extracted twice with a mixture of methanol and water (4 ml).
The collected supernatant was first concentrated with petroleum
ether and then, using an ester phase, it was dried under a stream
of nitrogen gas using a Termovap Sample Concentrator (Model
HP5106GD; Shanghai Eastern Analytical Instruments Co. Ltd,
Shanghai, China). The residue was dissolved in methanol and
analysed for chromatographic purity by high-performance liquid
chromatography (HPLC) using OrbiTrap Fusion Lumos
(Thermo Fisher, San Jose, CA, USA). ABA concentration (ng
g−1 DW) was calculated as ABA per leaf fresh mass × (leaf dry
mass/leaf fresh mass) of the leaves adjacent to the leaves sampled
for ABA.

Addition of exogenous ABA

Using a sharp knife, fronds were cut from three individuals of
each fern species under double distilled water and rehydrated.
Once the immersed fronds were fully hydrated, gs was measured
using the LI-6400 photosynthesis system (Li-Cor) under the con-
ditions described earlier. After gs had stabilized, ABA solution
was added to the solution containing the immersed shoots in
order to achieve a target concentration of 15 000 ng g−1. Then,
gs was continuously measured for 90 min to test whether exoge-
nously added ABA induced stomatal closure.

Database selection

To characterize WUE patterns that are widespread across vascular
plants, we used 139 published reports providing data for A, gs
and E under well-watered and drought conditions for 339
species, including 202 angiosperm species from 44 families, 53
gymnosperm species from nine families, and 84 fern species from
30 families (Table S2). This literature was obtained from Google
Scholar; keyword searches included ‘water-use efficiency’, ‘photo-
synthesis and stomatal conductance’, ‘drought’ or ‘water stress’.
The data points were obtained from tables and digitalized figures
by Engauge Digitizer (Mark Mitchell, Baurzhan Muftakhidinov
and Tobias Winchen et al., ‘ENGAUGE DIGITIZER software’; http://
markummitchell.github.io/engauge-digitizer).

Statistical analysis

Treatment effects across the three lineages were evaluated using
one-way ANOVA followed by Duncan’s multiple range test to
separate means. The differences between mean values in well-wa-
tered and moderately stressed plants within each lineage and from
gymnosperms vs angiosperms were evaluated with independent-
sample t-tests. All statistical analyses were performed with SPSS
15.0 (SPSS Inc., Chicago, IL, USA), and results were considered
significant at P < 0.05. A regression analysis was performed
using SIGMAPLOT 12.5 (Systat Software Inc., San Jose, CA, USA).
The maximum-likelihood function that best fitted our data for
each species was selected to construct vulnerability curves using
the ‘optim’ function in R 3.1.0 (http://www.r-project.org; Burn-
ham & Anderson, 2004; Scoffoni et al., 2012). Four functions
were tested, according to previous studies (Pammenter & Willi-
gen, 1998; Scoffoni et al., 2012): linear (Kz = aψ z + b), three-

parameter sigmoidal K z ¼ a

1þe
� ψ�x0

bð Þ
� �

, logistic

K z ¼ a

1þ ψz
x0

� �b

0
B@

1
CA, and exponential function (K z ¼ y0þ ae�bψz ).

Kz in these functions denotes either A, gs, or E, and ψ z denotes leaf
water potential. For each dataset, functions were compared using
the Akaike information criterion (AIC), corrected for a low n. The
function with the lowest AIC value (differences > 2) was chosen as
the maximum-likelihood function. ψ leaf at 50% loss of photosyn-
thesis (AP50), stomatal conductance (gsP50) and transpiration
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(EP50) were determined. The differences between AP50 and gsP50
and between AP50 and EP50 within each linkage were evaluated
with paired t-tests. Maximum A (Amax), gs (gs-max), or E (Emax) were
the mean values measured under well-watered conditions.

Results

The nine seed plant species under study, especially the five
angiosperms, showed higher mean maximum A, gs and E values
than the fern species, under well-watered conditions (Figs 1,
S1–S3; Table S1). Decreasing ψ leaf resulted in a gradual decrease
in gs across species (Figs 1, S1–S3). In all four fern species, A, gs
and E decreased synchronously with decreasing ψ leaf (Figs 1, S1),
thus indicating no difference between AP50 and gsP50 (paired-
samples t-test, P = 0.356; Table S1), or between AP50 and EP50
(paired-samples t-test, P = 0.736; Table S1). However, A, gs and
E responded differentially to decreasing ψ leaf in all nine seed
plant species, with gs and E being more sensitive to such decreas-
ing ψ leaf, compared with A (Figs 1, S2, S3). Especially shortly
after drought treatment initiation, gs decreased sharply, while A
remained relatively constant (Fig. 2b,c). Thus, the instantaneous
slope of A vs gs and A vs E curve increased as drought stress pro-
gressed (Fig. 2e,f,h,i). As a result, gsP50 and EP50 were 0.29 �

0.09 and 0.30 � 0.06 MPa higher than AP50 among gym-
nosperms, and 0.27 � 0.07 and 0.30 � 0.09 MPa higher than
AP50 among angiosperms, respectively (paired-samples t-test,
P = 0.006–0.047) (Table S1). No significant differences in
AP50, gs P50 or EP50 were observed between gymnosperms and
angiosperms (independent-samples t-test, P = 0.059–0.078)
across seed plant lineages (Table S1), indicating that the sensitiv-
ity of A, gs and E to decreasing ψ leaf values did not clearly diverge
in the two groups tested herein.

In ferns, WUEi and WUEins remained unaltered with decreas-
ing ψ leaf under drought stress (Figs 2d,g, S4, S5), as all fern
species exhibited a synchronous decrease in A, gs and E (Figs 2a,
S1). However, WUEi and WUEins were upregulated in seed
plants (Figs 2, S4, S5), as shown by the more rapid decline in gs
and E than in A (Figs 2b,c, S2, S3). Further, WUEi and WUEins
showed 1.6- and 2.0-fold increases in the five gymnosperms, and
1.4- and 2.1-fold increases in the four angiosperms, respectively,
from well-watered to moderate drought stress conditions. How-
ever, both WUEi and WUEins either decreased or remained
unchanged under severe drought conditions (Figs 2, S4, S5).
Data from the present study and 339 species in previously pub-
lished reports showed that angiosperms had lower WUEi and
WUEins values across the three lineages under well-watered

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1 The coordination of photosynthesis rate (A), stomatal conductance (gs) and transpiration rate (E) with decreasing leaf water potential (ψ leaf). Leaf
photosynthesis (A) (a, d, g), stomatal conductance (gs) (b, e, h) and transpiration (E) (c, f, i) decreased gradually with decreasing ψ leaf in fern Coniogramme
intermedia (a–c), gymnosperm Pinus tabuliformis (d, e, f) and angiosperm Populus davidiana (g–i). The vertical dashed line shows ψ leaf at 50% loss of leaf
photosynthesis (AP50) (a, d, g), stomatal conductance (gsP50) (b, e, h) and transpiration (EP50) (c, f, i). The line plots are the maximum likelihood function
using a linear function (a–c), a three-parameter sigmoidal function (f–i), and a logistic function (d, e) according to the function with the lowest Akaike
information criterion (see the Materials and Methods section). The correlation coefficient (r2) and probability (P) of the fitted regressions are listed.
Maximum values for A (Amax), gs (gs-max) and E (Emax), and the values of AP50, gsP50 and EP50 are given for each species.
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conditions (Fig. 3), whereas, under moderate drought stress, seed
plants – especially angiosperms – significantly upregulated their
WUEi and WUEins, with a significant 1.8- to 2.6-fold increase,
in order to cope with water deficit. However, ferns did not

exhibit such responses (Fig. 3). WUEi and WUEins of gym-
nosperm species were similar to those of angiosperm species at
moderate drought stress (independent-samples t-test,
P = 0.112–0.428; Fig. 3; Table S2).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2 The relationships between photosynthesis rate (A) and stomatal conductance (gs), and between water-use efficiency (WUE) and decreasing leaf
water potential (ψ leaf). Photosynthesis (A) decreased linearly with decreasing stomatal conductance (gs) in fern species (a), but initially slowly and then
gradually with decreasing gs in gymnosperm species (b) and angiosperm species (c). Water-use efficiency (A/gs (WUEi) and the A/transpiration (E)
(WUEins)) did not change with decreasing ψ leaf in ferns (d, g), but increased and then decreased in gymnosperms and angiosperms (e, h, f, i). The line
indicates significant regressions (P < 0.05).
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The small increase recorded in leaf ABA concentrations in
ferns under drought stress was not significant (Figs 4a, S6), indi-
cating there was no correlation between gs and ABA concentra-
tions (Figs 4b, S6). Furthermore, no reduction in gs was observed
even when the ABA solution was applied to the leaf transpiration
stream at a concentration of 15 000 ng ml−1 for 90 min (Fig.
S7). By contrast, ABA concentrations in leaves of seed plants
increased four- to 12-fold linearly or slowly initially and then
rapidly with decreasing ψ leaf (Figs 4c,e, S8, S9), thereby inducing
an exponential decline in gs (Figs 4d,f, S8, S9).

Discussion

Water deficit is the most widespread environmental stress factor
that has shaped plant evolution (Adams et al., 2017). Here, we
investigated the WUE of phylogenetically diverse ferns and seed
plant species in response to water deficit. Our results showed that
seed plants have evolved the ability to upregulate WUE when
exposed to drought stress conditions. By contrast, ferns seemed
unable to upregulate WUE. Increasing WUE in seed plants was
related to a slow drought-induced decrease in photosynthesis rate
coupled to a rapid decrease in stomatal conductance and transpi-
ration rate. This was seemingly a result of a decrease in ‘excessive’
stomatal opening observed during the early stages of drought in
response to ABA accumulation in leaves. However, ferns, in
which stomatal conductance was low and stomata did not open
beyond the optimum point for maximum WUE even under
well-watered conditions, exhibited a steady WUE in response to
a decreasing leaf water potential. These data are consistent with
previous reports of stable WUE in seed plants but reduced values
in ferns and lycophytes under varying light intensities (McAdam
& Brodribb, 2012). Further, WUE increased in seed plants, but
not in ferns or lycophytes under increasing CO2 concentrations
(Brodribb et al., 2009). Our findings underline the idea that the

upregulation of WUE in seed plants may offer a competitive
advantage in environments with low water availability. Further-
more, our data strongly suggest that the evolution of stomatal
function is not a highly conserved process but an evolutionary
transition that enables WUE upregulation in response to water
deficit.

The data from this study were combined with those of 339
phylogenetically diverse species from different habitats; the
results of the analysis of all these data showed that angiosperms
exhibited lower WUE compared with gymnosperms and ferns
under well-watered conditions. However, WUE (including
WUEi and WUEins) was significantly upregulated under water-
deficit in all seed plant species as a result of a slower rate of
decline of A than of either gs or E (Fig. 3; Brodribb, 1996; Fang
et al., 2011; Yao et al., 2021b). Modelling of A and gs in response
to drought conditions has shown that WUEi increases with
drought stress (Misson et al., 2004; Manzoni et al., 2011). Thus,
optimized WUE in response to water deficit is a basic adaptive
trait of seed plants. In contrast with studies of the responses of
seed plants to drought stress, studies on changes in WUE in ferns
are significantly limited, with only 19 species having been investi-
gated, including the data from the study reported herein
(Table S3). All available data show no ability for upregulation of
WUE in these species. Therefore, it can be argued that ferns lack
the ability to increase WUE when a decrease in water supply
occurs. We are aware that WUEi and WUEins data in the meta-
analysis in our study were obtained from plants growing under
different conditions of vapor pressure deficit, and hence the lack
of a rigorous framework for the comparison of WUEins.
Nonetheless, WUEi is comparable across the three plant lineages,
and higher WUEi in seed plants adds support to the fact that seed
plants exhibit improved WUE under water stress, whereas ferns
do not. The difference in WUEi and WUEins between
angiosperms and gymnosperms under drought stress across seed

Fig. 3 Meta-analysis showing moderate drought-induced increasing water-use efficiency (WUE) in gymnosperms and angiosperms, but no in ferns.
Intrinsic WUE (WUEi) (the photosynthesis (A)/stomatal conductance (gs)) and instantaneous WUE (WUEins) (A/transpiration (E)) in angiosperms (blue bars)
and gymnosperms (yellow bars) increased significantly under moderate drought stress (light colour indicates well-watered, dark colour indicates moderate
drought), while the WUEins and WUEi in ferns (orange bars) did not increase (light colour indicates well-watered, dark colour indicates moderate drought)
(data from Supporting Information Table S3). For WUEi, n = 236 for well-watered angiosperm and n = 183 for angiosperm under moderate drought; the
respective figures are n = 99 and 79 for gymnosperms and n = 101 and 21 for ferns. For WUEins, the values are, respectively, n = 94 and 76 for
angiosperms, n = 28 and 26 for gymnosperms, and n = 52 and 4 for ferns. Mean values (�SE) labelled with an asterisk are significantly different
(P < 0.05), and ns indicates no significant difference (P ≥ 0.05) between well-watered and moderate drought treatments within each lineage. Mean
values labelled with the same letter are not significantly different across three lineages under each treatment (P ≥ 0.05).
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species was not significant (Fig. 3). However, equal WUE values
in gymnosperms may not mean they are equally as competitive in
response to drought as angiosperms. Besides the increasing degree
of WUE, the accumulated area of increasing WUE (consisting of
a boundary by the regression line of increasing WUE and the
horizontal line of WUE of well-watered plants) might be related
to their competitive ability as well. Investigating the accumula-
tion area of WUE in diverse gymnosperm and angiosperm
species might provide novel insights into the evolution process of
the gas exchange mechanisms across seed plants.

Increasing concentrations of ABA in the leaves of seed plants
are reportedly associated with stomatal closure to reduce transpi-
rational water loss at the expense of CO2 inward diffusion for
photosynthesis (Pantin et al., 2013; Gago et al., 2014; Lim et al.,
2015; McAdam & Brodribb, 2018; Yao et al., 2021a). However,
stomata of seed plants are more sensitive to ABA than to photo-
synthesis (Holaday et al., 1992), as has been shown for deciduous
trees (Aasamaa et al., 2002) and shrubs (Yao et al., 2021b), and
as evidenced by a meta-analysis of 237 species (Gago et al.,
2014). Similar results were observed in Tradescantia virginiana
treated with ABA (Franks & Farquhar, 2001). Even after addi-
tion of ABA to isolated mesophyll cells of Phaseolus vulgaris,
Lycopersicum esculentum and Nicotiana tabacum at a concentra-
tion 19 times higher than the minimum concentration necessary

for stomatal closure, the increasing intracellular ABA concentra-
tion did not inhibit photosynthesis (Mawson et al., 1981). These
results indicate that ABA concentrations do not directly affect
photosynthesis. Hence, the gap between stomatal and photosyn-
thetic responses results in an increase in WUE. Indeed, the
increase in WUE observed in angiosperms during drought is
seemingly a result of their stomata opening beyond the optimum
required for maximum A under well-watered conditions, and a
rapid reduction of the ‘excessive’ stomatal opening induced by
ABA accumulation under drought conditions, which implies that
the decline in gs has little effect on A (Deans et al., 2019) upon
drought stress initiation, whereby WUE increases. Vessel ele-
ments with greatly improved hydraulic efficiency (Feild & Bro-
dribb, 2013) and leaves with greater vein density and lower leaf
hydraulic resistance (Brodribb & Feild, 2010) might facilitate
high rates of water transport and, hence, increasing transpiration
(Deans et al., 2019). Thus, angiosperms seemingly experience
diminishing returns of A with respect to gs (Deans et al., 2019)
when they are experiencing well-watered conditions, suggesting
that maximizing A is a stronger selective force than WUE when
water supply is unlimited. Here, we argue that the rapid decrease
in ‘excessive’ stomatal opening in response to elevated ABA, as
well as the slowly decreasing photosynthetic activity are the basis
of WUE upregulation in plants (Hetherington & Woodward,

(a) (b)

(c) (d)

(e) (f)

Fig. 4 The relationships between abscisic acid (ABA) concentration and decreasing leaf water potential (ψ leaf), and between stomatal conductance (gs) and
increasing ABA concentration. ABA concentration increased significantly with decreasing ψ leaf, and stomatal conductance (gs) decreased significantly with
increasing ABA concentration in gymnosperm Pinus tabuliformis (c, d) and angiosperm Populus davidiana (e, f), but the correlation was not observed in
fern Coniogramme intermedia (a, b). The line plots are the maximum likelihood function using a three-parameter sigmoidal (c, e) and an exponential (d, f)
function according to the function with the lowest Akaike information criterion value (see the Materials and Methods section). The line indicates significant
regressions (P < 0.05), and the correlation coefficient (r2) and probability (P) of regressions are listed.
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2003). Some studies have shown that ABA was synthesized slowly
in some gymnosperm species (delay of hours) but rapidly in
angiosperms (within minutes) after exposure to water stress
(McAdam & Brodribb, 2015, 2016). In this study, drought stress
was imposed over a period of 3–5 wk. Thus, we did not have the
temporal resolution to observe these differences even if they
occurred.

Ferns have vessel elements with low hydraulic efficiency (Feild
& Brodribb, 2013), low leaf vein density and high leaf hydraulic
resistance (Brodribb & Feild, 2010), all of which tend to con-
strain stomatal conductance (Franks, 2006; Brodribb et al., 2007;
Boyce et al., 2009; Xiong et al., 2018; Deans et al., 2019), as
indicated by the magnitude of gs. The stomatal conductance was
c. 30% of that observed in angiosperms under well-watered con-
ditions (Brodribb et al., 2005; Brodribb & Feild, 2010; Carriquı́
et al., 2015). Thus, ferns with no stomata open beyond the opti-
mum for maximum A exhibited higher WUE than angiosperms
(Deans et al., 2019). A linear regression of A vs gs was observed
with decreasing ψ leaf, hence the unchanged value for WUE dur-
ing dehydration. Three lines of evidence support the lack of
increase in WUE:
(1) Stomatal conductance of ferns under well-watered conditions
is similar to the stomatal conductance of angiosperms that have
suffered moderate to severe drought stress; a decrease in gs would
greatly constrain A, which would be similar to that observed in
angiosperms under moderate or severe drought stress (Fig. 2).
(2) Stomatal closure is mainly regulated by passive hydraulics,
not by ABA (Brodribb & McAdam, 2011). Under 70% RH, gs
in leaves of Athyrium filix-femina and Dryopteris filix-mas
decreased in response to an ABA spray. By contrast, no decrease
was observed under 30% RH (Hõrak et al., 2017). A marked
decrease in stomatal opening in response to ABA was also
observed in stomatal aperture assays of Polystichum proliferum
and Nephrolepis exaltata (Cai et al., 2017). However, stomata of
A. filix-femina and N. exaltata did not respond to endogenous
ABA accumulation during drought stress (Cardoso et al., 2019;
Cardoso & McAdam, 2019).
(3) Even under the assumption that stomata of some ferns would
respond to ABA, stomata not opening beyond the optimum for
WUE would result in no improvement in WUE.

In this study, the conditions in the glasshouse were very similar
to those in the field, so as to avoid the possibility of an anomalous
behaviour of ferns in the glasshouse. Therefore, we contend that
an increase in WUE in seed plants confers an improvement in
productivity per unit water lost in transpiration, thereby provid-
ing them with a competitive advantage under water deficit absent
in ferns. Data obtained in this study are consistent with previous
knowledge that fern species compete weakly and are less dis-
tributed in arid environments (Karst et al., 2005; Bickford & Laf-
fan, 2006; Link-Pérez & Laffan, 2018).

In conclusion, our results suggest that the rapid decrease in ‘ex-
cessive’ stomatal opening in response to elevated ABA occurring
after the establishment of early-diverging vascular plants, such as
ferns, has enabled seed plants to greatly improve WUE and, con-
sequently, their overall performance under drought conditions
compared with their predecessors. Although a more effective

hydraulic mesophyll conductance is the basis for ‘excessive’ stom-
atal opening and a higher rate of photosynthesis in seed plants
that would provide them with superior ability for growth to sub-
sequently replace their predecessors (Brodribb et al., 2005; Bro-
dribb & Feild, 2010; Gago et al., 2013; Carriquı́ et al., 2015),
this study showed that the increase in WUE in seed plants was
superior to that in ferns under changing water status, which
seems to have contributed to the increased propagation of seed
plants in arid regions (Dolan, 2001; Brodribb et al., 2007, 2012;
Hetherington & Dolan, 2019). Altogether, our results provide a
strong line of support to the theoretical framework of the evolu-
tion of plant species.
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Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD et al. 2017. A
multi-species synthesis of physiological mechanisms in drought-induced tree

mortality. Nature Ecology Evolution 1: 1285–1291.
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